Rapid onset of specific diaphragm weakness in a healthy murine model of ventilator-induced diaphragmatic dysfunction.
نویسندگان
چکیده
BACKGROUND Controlled mechanical ventilation is associated with ventilator-induced diaphragmatic dysfunction, which impedes weaning from mechanical ventilation. To design future clinical trials in humans, a better understanding of the molecular mechanisms using knockout models, which exist only in the mouse, is needed. The aims of this study were to ascertain the feasibility of developing a murine model of ventilator-induced diaphragmatic dysfunction and to determine whether atrophy, sarcolemmal injury, and the main proteolysis systems are activated under these conditions. METHODS Healthy adult male C57/BL6 mice were assigned to three groups: (1) mechanical ventilation with end-expiratory positive pressure of 2-4 cm H2O for 6 h (n=6), (2) spontaneous breathing with continuous positive airway pressure of 2-4 cm H2O for 6 h (n=6), and (3) controls with no specific intervention (n=6). Airway pressure and hemodynamic parameters were monitored. Upon euthanasia, arterial blood gases and isometric contractile properties of the diaphragm and extensor digitorum longus were evaluated. Histology and immunoblotting for the main proteolysis pathways were performed. RESULTS Hemodynamic parameters and arterial blood gases were comparable between groups and within normal physiologic ranges. Diaphragmatic but not extensor digitorum longus force production declined in the mechanical ventilation group (maximal force decreased by approximately 40%) compared with the control and continuous positive airway pressure groups. No histologic difference was found between groups. In opposition with the calpains, caspase 3 was activated in the mechanical ventilation group. CONCLUSION Controlled mechanical ventilation for 6 h in the mouse is associated with significant diaphragmatic but not limb muscle weakness without atrophy or sarcolemmal injury and activates proteolysis.
منابع مشابه
AT1 receptor blocker losartan protects against mechanical ventilation-induced diaphragmatic dysfunction.
Mechanical ventilation is a life-saving intervention for patients in respiratory failure. Unfortunately, prolonged ventilator support results in diaphragmatic atrophy and contractile dysfunction leading to diaphragm weakness, which is predicted to contribute to problems in weaning patients from the ventilator. While it is established that ventilator-induced oxidative stress is required for the ...
متن کاملCritical illness and mechanical ventilation: effects on the diaphragm.
Although life-saving, mechanical ventilation is associated with numerous complications. These include pneumonia, cardiovascular compromise, barotrauma, and ventilator-induced lung injury. Recent data from animal studies suggest that controlled mechanical ventilation can cause dysfunction of the diaphragm, decreasing its force-generating capacity--a condition referred to as ventilator-induced di...
متن کاملEndurance exercise attenuates ventilator-induced diaphragm dysfunction.
Controlled mechanical ventilation (MV) is a life-saving measure for patients in respiratory failure. However, MV renders the diaphragm inactive leading to diaphragm weakness due to both atrophy and contractile dysfunction. It is now established that oxidative stress is a requirement for MV-induced diaphragmatic proteolysis, atrophy, and contractile dysfunction to occur. Given that endurance exe...
متن کاملCan phrenic stimulation protect the diaphragm from mechanical ventilation-induced damage?
Mechanical ventilation is a prominent lifesaving treatment. It is, however, associated with an array of adverse effects, which include ventilator-associated pneumonias, volume-induced lung injury and, more recently identified, ventilator-induced diaphragm dysfunction (VIDD) [1–3]. VIDD combines diaphragm weakness with muscle fibre atrophy, remodelling and injury. Its mechanisms involve decrease...
متن کاملLeaky ryanodine receptors contribute to diaphragmatic weakness during mechanical ventilation.
Ventilator-induced diaphragmatic dysfunction (VIDD) refers to the diaphragm muscle weakness that occurs following prolonged controlled mechanical ventilation (MV). The presence of VIDD impedes recovery from respiratory failure. However, the pathophysiological mechanisms accounting for VIDD are still not fully understood. Here, we show in human subjects and a mouse model of VIDD that MV is assoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 117 3 شماره
صفحات -
تاریخ انتشار 2012